互联网流量分类在网络可见性,服务质量(QoS),入侵检测,经验质量(QOE)和交通趋势分析中起关键作用。为了提高隐私,完整性,机密性和协议混淆,当前的流量基于加密协议,例如SSL/TLS。随着文献中机器学习(ML)和深度学习(DL)模型的使用增加,由于缺乏标准化的框架,不同模型和方法之间的比较变得繁琐且困难。在本文中,我们提出了一个名为OSF-EIMTC的开源框架,该框架可以提供学习过程的完整管道。从著名的数据集到提取新的和知名的功能,它提供了著名的ML和DL模型(来自交通分类文献)的实现以及评估。这样的框架可以促进交通分类域的研究,从而使其更可重复,可重复,更易于执行,并可以更准确地比较知名和新颖的功能和新颖的功能和模型。作为框架评估的一部分,我们演示了可以使用多个数据集,模型和功能集的各种情况。我们展示了公开可用数据集的分析,并邀请社区使用OSF-EIMTC参与我们的公开挑战。
translated by 谷歌翻译
互联网流量分类广泛用于促进网络管理。它在服务质量(QoS),经验质量(QOE),网络可见性,入侵检测和交通趋势分析中起着至关重要的作用。尽管没有理论上的保证,即基于深度学习的解决方案比经典的机器学习(ML)的解决方案更好,但基于DL的模型已成为常见默认值。本文比较了著名的基于DL和基于ML的模型,并表明,在恶意交通分类的情况下,最先进的基于DL的解决方案不一定优于基于经典的ML的解决方案。我们使用两个知名数据集来体现这一发现,用于各种任务,例如:恶意软件检测,恶意软件家庭分类,零日攻击的检测以及对迭代增长数据集的分类。请注意,评估所有可能的模型以做出具体陈述是不可行的,因此,上述发现不是避免基于DL的模型的建议,而是经验证明,在某些情况下,有更简单的解决方案,即更简单的解决方案,即可能表现更好。
translated by 谷歌翻译
对图像到图像翻译的监督(I2I)任务很难通过,但对所产生的质量产生重大影响。在本文中,我们观察到,对于许多无人监督的I2I(UI2I)方案,一个域更熟悉另一个域,并且提供域的域名先前知识,例如语义分割。我们争辩说,对于复杂的场景,弄清楚域的语义结构很难,特别是没有监督,而是一个成功的I2i操作的重要组成部分。因此,我们介绍了两种技术,以便在翻译质量的好处结合这种无价值的域的现有知识:通过一种新的多流生成器架构,并通过基于语义分段的正则化损耗术语。从本质上讲,我们根据语义掩模提出分离输入数据,明确地将网络引导到图像的不同区域的不同行为。此外,我们提出培训语义分段网络以及翻译任务,并将其作为提高稳健性的损耗术语利用。我们验证了我们对城市数据的方法,展示了将Day Images转换为夜间图像的挑战UI2i任务的卓越品质。此外,我们还展示了如何使用我们的增强图像加强目标数据集,从而提高了诸如经典检测之类的下游任务的培训。
translated by 谷歌翻译
Most cross-domain unsupervised Video Anomaly Detection (VAD) works assume that at least few task-relevant target domain training data are available for adaptation from the source to the target domain. However, this requires laborious model-tuning by the end-user who may prefer to have a system that works ``out-of-the-box." To address such practical scenarios, we identify a novel target domain (inference-time) VAD task where no target domain training data are available. To this end, we propose a new `Zero-shot Cross-domain Video Anomaly Detection (zxvad)' framework that includes a future-frame prediction generative model setup. Different from prior future-frame prediction models, our model uses a novel Normalcy Classifier module to learn the features of normal event videos by learning how such features are different ``relatively" to features in pseudo-abnormal examples. A novel Untrained Convolutional Neural Network based Anomaly Synthesis module crafts these pseudo-abnormal examples by adding foreign objects in normal video frames with no extra training cost. With our novel relative normalcy feature learning strategy, zxvad generalizes and learns to distinguish between normal and abnormal frames in a new target domain without adaptation during inference. Through evaluations on common datasets, we show that zxvad outperforms the state-of-the-art (SOTA), regardless of whether task-relevant (i.e., VAD) source training data are available or not. Lastly, zxvad also beats the SOTA methods in inference-time efficiency metrics including the model size, total parameters, GPU energy consumption, and GMACs.
translated by 谷歌翻译
Transformer layers, which use an alternating pattern of multi-head attention and multi-layer perceptron (MLP) layers, provide an effective tool for a variety of machine learning problems. As the transformer layers use residual connections to avoid the problem of vanishing gradients, they can be viewed as the numerical integration of a differential equation. In this extended abstract, we build upon this connection and propose a modification of the internal architecture of a transformer layer. The proposed model places the multi-head attention sublayer and the MLP sublayer parallel to each other. Our experiments show that this simple modification improves the performance of transformer networks in multiple tasks. Moreover, for the image classification task, we show that using neural ODE solvers with a sophisticated integration scheme further improves performance.
translated by 谷歌翻译
Image segmentation is a fundamental task in computer vision. Data annotation for training supervised methods can be labor-intensive, motivating unsupervised methods. Some existing approaches extract deep features from pre-trained networks and build a graph to apply classical clustering methods (e.g., $k$-means and normalized-cuts) as a post-processing stage. These techniques reduce the high-dimensional information encoded in the features to pair-wise scalar affinities. In this work, we replace classical clustering algorithms with a lightweight Graph Neural Network (GNN) trained to achieve the same clustering objective function. However, in contrast to existing approaches, we feed the GNN not only the pair-wise affinities between local image features but also the raw features themselves. Maintaining this connection between the raw feature and the clustering goal allows to perform part semantic segmentation implicitly, without requiring additional post-processing steps. We demonstrate how classical clustering objectives can be formulated as self-supervised loss functions for training our image segmentation GNN. Additionally, we use the Correlation-Clustering (CC) objective to perform clustering without defining the number of clusters ($k$-less clustering). We apply the proposed method for object localization, segmentation, and semantic part segmentation tasks, surpassing state-of-the-art performance on multiple benchmarks.
translated by 谷歌翻译
In object detection, post-processing methods like Non-maximum Suppression (NMS) are widely used. NMS can substantially reduce the number of false positive detections but may still keep some detections with low objectness scores. In order to find the exact number of objects and their labels in the image, we propose a post processing method called Detection Selection Algorithm (DSA) which is used after NMS or related methods. DSA greedily selects a subset of detected bounding boxes, together with full object reconstructions that give the interpretation of the whole image with highest likelihood, taking into account object occlusions. The algorithm consists of four components. First, we add an occlusion branch to Faster R-CNN to obtain occlusion relationships between objects. Second, we develop a single reconstruction algorithm which can reconstruct the whole appearance of an object given its visible part, based on the optimization of latent variables of a trained generative network which we call the decoder. Third, we propose a whole reconstruction algorithm which generates the joint reconstruction of all objects in a hypothesized interpretation, taking into account occlusion ordering. Finally we propose a greedy algorithm that incrementally adds or removes detections from a list to maximize the likelihood of the corresponding interpretation. DSA with NMS or Soft-NMS can achieve better results than NMS or Soft-NMS themselves, as is illustrated in our experiments on synthetic images with mutiple 3d objects.
translated by 谷歌翻译
Out-of-distribution (OOD) detection has attracted a large amount of attention from the machine learning research community in recent years due to its importance in deployed systems. Most of the previous studies focused on the detection of OOD samples in the multi-class classification task. However, OOD detection in the multi-label classification task remains an underexplored domain. In this research, we propose YolOOD - a method that utilizes concepts from the object detection domain to perform OOD detection in the multi-label classification task. Object detection models have an inherent ability to distinguish between objects of interest (in-distribution) and irrelevant objects (e.g., OOD objects) on images that contain multiple objects from different categories. These abilities allow us to convert a regular object detection model into an image classifier with inherent OOD detection capabilities with just minor changes. We compare our approach to state-of-the-art OOD detection methods and demonstrate YolOOD's ability to outperform these methods on a comprehensive suite of in-distribution and OOD benchmark datasets.
translated by 谷歌翻译
This is a continuation of our recent paper in which we developed the theory of sequential parametrized motion planning. A sequential parametrized motion planning algorithm produced a motion of the system which is required to visit a prescribed sequence of states, in a certain order, at specified moments of time. In the previous publication we analysed the sequential parametrized topological complexity of the Fadell - Neuwirth fibration which in relevant to the problem of moving multiple robots avoiding collisions with other robots and with obstacles in the Euclidean space. Besides, in the preceeding paper we found the sequential parametrised topological complexity of the Fadell - Neuwirth bundle for the case of the Euclidean space $\Bbb R^d$ of odd dimension as well as the case $d=2$. In the present paper we give the complete answer for an arbitrary $d\ge 2$ even. Moreover, we present an explicit motion planning algorithm for controlling multiple robots in $\Bbb R^d$ having the minimal possible topological complexity; this algorithm is applicable to any number $n$ of robots and any number $m\ge 2$ of obstacles.
translated by 谷歌翻译
Domain generalization (DG) aims to train a model to perform well in unseen domains under different distributions. This paper considers a more realistic yet more challenging scenario,namely Single Domain Generalization (Single-DG), where only a single source domain is available for training. To tackle this challenge, we first try to understand when neural networks fail to generalize? We empirically ascertain a property of a model that correlates strongly with its generalization that we coin as "model sensitivity". Based on our analysis, we propose a novel strategy of Spectral Adversarial Data Augmentation (SADA) to generate augmented images targeted at the highly sensitive frequencies. Models trained with these hard-to-learn samples can effectively suppress the sensitivity in the frequency space, which leads to improved generalization performance. Extensive experiments on multiple public datasets demonstrate the superiority of our approach, which surpasses the state-of-the-art single-DG methods.
translated by 谷歌翻译